DISTRICT INSTITUTE OF EDUCATION AND TRAINING, CHITRADURGA $10^{\text {TH }}$ STANDARD MODEL PAPER II 2020-21
 TIME: 3hours 15 min

 \section*{SUB: MATHEMATICS}

 \section*{SUB: MATHEMATICS}
 DATE :
 MARKS : 80

I Choose the correct answer from the four answers given in the following questions:
$1 \mathrm{X8}=8$

1. The $15^{\text {Th }}$ term of an Arithemaic Progression $1,5,9,13$ \qquad is
a) 49
b) 52
c) 57
d) 56
2. A formula to find out the distance between the point $\mathrm{A}(\mathrm{x}, \mathrm{y})$ with the origin is \qquad
a) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
b) $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$
c) $\left(\sqrt{x^{2}+y^{2}}\right)$
d) $(\sqrt{x-y})^{2}$
3. When the linear equations $a_{1} x+b_{1} y+c_{1}=0 \quad a_{2} x+b_{2} y+c_{2}=0 \quad$ are parallel to each other then \qquad
a) $\quad \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
b) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
c) $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
d) $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
4. One root of the equation $(x+5)(x+2)=0$ is -2 then another root is \qquad
a) +2
b) +5
c) -5
d) -2
5. In the figure $\mathrm{DE} \| \mathrm{AB}$ then find the vlue of ' x '.
(a) 12
(b)
16
(c) 10
(d) 32

6 The length of the tangent drawn from an external point 10 cm from the centre of the circle of radius 6 cm is \qquad
(a) 8 cm
(b) 7 cm
(c) 4 cm
(d) 9 cm
7. The formula to find the volume of a sphere is \qquad
a) $\pi r^{2} h$
b) $\frac{4}{3} \pi r^{3}$
c) $\frac{1}{3} \pi r^{3}$
d) $\pi r(r+h)$
8. If $\sin \theta=\frac{3}{5}$ and $\cos \theta=\frac{4}{5}$ then value of $\tan \theta$ \qquad
a) $\frac{4}{3}$
b) $\frac{5}{3}$
c) $\frac{5}{4}$
d) $\frac{3}{4}$
9. The ' n 'th term of an Arithematic Progression is $a_{n}=3 n-2$ find the ' 9 'th term.
10. If $\cos A=\frac{5}{13}$ then find the value of $\sec A$
11. Find the roots of the equation $x^{2}-25=0$
12. In $\triangle A B C, A B^{2}+B C^{2}=A C^{2}$ name the right angle.
13. Write the formula to find the total surface area of a circular based straight cone having radius ' r ' and slant height ' l '.
14. State Phythogorus theorem.
15. Find the distance between the Point (,) and origin.
16. In the figure $A B$ is diameter find angle $\angle B A C$.

III Two marks questions:$2 X 8=16$
17. Find the 21 st term of an A.P 5, 9, 13, 17,
18. Solve the equations: $2 x+3 y=16$ and $2 x-2 y=-4$
19. Find the coordinates of the midpoint of the linesegment join the coordinates $(4,5)$ and $(2,7)$
20. Draw a pair of tangents to a circle with a radius of 5 cm which are inclined each other at an angle of 120°
21. Find the value of the discriminant of the quadratic equation $2 x^{2}-5 x-1=0$ and hence write the nature of roots of equation.
22. Prove $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{1-s}{1+\sin }$
23. Find total surface area of a cubiod of dimensions $4 \mathrm{~cm} \times 5 \mathrm{~cm} \times 7 \mathrm{~cm}$
24. A man of height 6 foot standing near a pole of height 8 foot. Find the length of the shadow of the pole at a fixed time in a day, if the length of the shadow man is 9 foot.

IV Three marks questions:$3 \times 9=27$
25. Prove that the tangents drawn from the external point to the circle, are equal.
26. Draw a circle of radius 3.5 cm and construct a pair of tangents to it from an external point 8 cm away from the centre. Measure the length of the tangents.
27. Construct a triangle $P Q R$ with sides $Q R=6.5 \mathrm{~cm}, \quad P Q=5.5 \mathrm{~cm}, \quad P R=5 \mathrm{~cm}$ and construct another triangle whose sides are $\frac{4}{3}$ of the corresponding sides of the constructed triangle.

In an A.P the sum of the first 14 terms is 1050 and first term is 10 , then find the $20^{\text {th }}$ term of the A.P.
29. Find the area of the triangle whose vertices are $(1,3),(4,4)$ and $(3,5)$.
30. If the equation $2 x^{2}+k x+8=0$ has equal roots, then find the value of k.
31. Prove $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\tan ^{2} A$

Class interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
frequency	4	8	10	12	10	4	2

33. The length of the side of a cube is 10 cm . Find the total surface area of the solid when two such cubes are joined together side by side.
Four marks questions:-

4X4=16

34. Find the solution of the following pair of linear equations by the graphical method, $x+y=8 \quad \& \quad x-y=2$
35. The nth term of an A.P is $a_{n}=3+2 n$, find the sum of first 24 terms.
36. Draw a "more than type" of ogive for the given data :

Class Interval	Frequency
15 or above 15	6
30 or above 30	8
45 or above 45	10
60 or above 60	6
75 or above 75	4

37. The angle of elevation of the bottom and top of a vertical pole placed on a 20 m height building from a point on a horizontal ground is 45° and 60°. Find the height of the pole.
